Latex balloons do not degrade uniformly in freshwater, marine and composting environments
Morgan E. Gilmour, Jennifer L. LaversLatex balloons are a poorly-studied aspect of anthropogenic pollution that affects wildlife survival, aesthetic value of waterways, and may adsorb and leach chemicals. Pure latex needs to be vulcanised with sulphur and requires many additional compounds to manufacture high quality balloons. Yet, balloons are often marketed as “biodegradable”, which is confusing to consumers.
Please note, a companion article for this paper was published by The Conversation.
Due to the persistence of latex balloons in the environment and the lethal, documented threat to wildlife, degradation behaviours of latex balloons were quantified in freshwater, saltwater and industrial compost. Using the metrics mass change, ultimate tensile strength (UTS) and superficial composition via attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), latex balloon degradation was documented for 16 weeks. Overall, latex balloons retained their original shape and size.
Composted balloons lost 1–2% mass, but some balloons in freshwater gained mass, likely due to osmotic processes. Balloons’ UTS decreased from 30.7 ± 10.8–9.5 ± 4.1 Newtons in water, but remained constant (34.3 ± 13.4 N) in compost. ATR-FTIR spectra illustrated compositional and temporal differences between treatments.
Taken together, latex balloons did not meaningfully degrade in freshwater, saltwater, or compost indicating that when released into the environment, they will continue to contribute to anthropogenic litter and pose a threat to wildlife that ingest them.